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Abstract
Over the last few years, a lot of research has been conducted around

the study of efficient zero-knowledge proof systems. The ultimate goal is
to produce proofs capable of attesting the correct execution of arbitrary
programs such that verification time is logarithmic compared to that of
running the program directly. Moreover, these proofs should be repre-
sentable as a short single string of bits which do not reveal anything about
the inputs used.

In this report, we provide an overview of notions from complexity
theory, information theory, and cryptography. This will provide us with
the necessary intuition to understand and compare thee modern proof
systems.
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1 Intro
The last decade has seen an incredible surge in research surrounding “zk-
SNARK”s, an acronym for zero-knowledge Succinct Non-interactive ARgument
of Knowledge. Behind these loaded terms is the idea of proving that one knows
a fact which confirms that a statement is true. The proof takes the form of a
short single string of bits (relative to the size of the original statement) and is
verifiable in less time than it would take to naïvely verify the original fact. They
should also be unforgeable under standard cryptographic assumptions. Finally,
the proof does not leak any information at all about the fact being proved. The
statements usually take the form of some computation problem like:

“Given a public input x and a function F ,
I know a secret w such that F (x,w) returns true.”

Blockchains are a very intriguing candidate for applying zkSNARKs, since
they can be used to store and verify proofs in an efficient way. This is the case for
Zcash [BCG+14] where zkSNARKs are used to encode coin transactions without
revealing information about the sender or receiver. In contrast, transactions on
classic blockchains are represented as signatures, whose verification requires the
identity of the parties involved.

Another interesting application is verifiable computation, for checking that
a computationally intensive program was executed correctly. The important
property here is succinct verification which runs with exponentially less resources.
For example, consider the task of running T iterations of a machine learning
training loop and delegating to a cloud service provider. By accompanying the
resulting model with the appropriate proof, the client could verify this model
was correctly computing in only log T time.

We structure this report in a way that naturally introduces the many “in-
gredients” that make up some of the most recent proof systems. The main goal
is to equip the reader with enough knowledge and curiosity to pursue further
research into this subject, and so we will focus more on developing intuition,
rather than full give details and security proofs.

In Section 2, we recall basic concepts from computational complexity theory
and establish a framework for describing proof systems. Section 3 presents
the IP, PCP, and IOP proof models, and describes how these constructions
can be instantiated in practice. Finally, we explore the Aurora [BCR+19],
Marlin [CHM+20], and Fractal [COS20] proof systems in Section 4. This will
provide insight as to how modern zkSNARKs are constructed, and how different
setups can affect their overall efficiency. We then evaluate these using existing
open-source libraries.

Notation For n ≥ 1, we denote the set {1, . . . , n} as [n]. We refer to a field of
order q as Fq, but may omit the subscript when the it is clear from the context.
The set F≤d[X1, . . . , Xn] contains all polynomials over F over n variables where
the degree of each monomial is less than d. The letter λ denotes the security
parameter.
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2 Complexity Theory Background
The concepts of proofs and computations are formalized through the field of
complexity theory. They will allow us to reason in more mathematical way,
mostly though polynomials and linear algebra. After providing the necessary
definitions, we will be able to express problems as objects in sets. We also present
the circuit satisfaction problem which generalizes the type of question we asked
in the introduction.

2.1 Proofs
We start by formalizing the notion of proofs using terminology from complexity
theory. Any expressible object can be written as a sequence of symbols from an
alphabet which we denote by Σ. Usually, we set Σ to be a field F, or the binary
set {0, 1}. The set Σ? defines all finite sequences of elements in Σ, including the
empty sequence ε. For any element e ∈ Σ?, the length of e is represented by |e|.

Elements in Σ? can define statements and proofs. The validity of a proof w for
a statements x depends on whether (x,w) belongs to relation R ⊂ Σ? ×Σ?. We
can also consider R as a predicate where R(x,w) = true if and only if (x,w) ∈ R.

A language L is a set of provable statements, which can be defined given an
existing relation R:

LR := {x ∈ Σ? | ∃w ∈ Σ?, (x,w) ∈ R}.

This notation allows us think about proofs and statements in mathematical
terms. For example, given a question like “Is N ∈ N the product of two primes?”,
we define the relation

RCOMPOSITE := {(N ; (p, q)) | N, p, q ∈ N, p, q are prime, and N = p · q}.

The corresponding language is then

LCOMPOSITE := {N ∈ N | ∃primes p, q such that N = p · q}.

2.2 Machines and Algorithms
Throughout this report, we will often be referring to machines and algorithms
performing calculations that maps inputs to outputs. The terminology sur-
rounding these can vary a lot in the literature, and delving into the details is
beyond the reach of this report. In general, we will refer to an algorithm as the
set of instructions that must be followed to produce the output. From these
instructions, we can construct an abstract computational machine performing
the same computation. The machine is composed of a head which can read
the symbol of a cell located on an infinite length memory tape. Depending on
the value read, the machine performs a lookup in its internal finite state which
dictate which of the following actions it should perform.

• write a symbol in the current cell
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• move to one of the adjacent cells

• repeat the above on the next cell or halts

This model is called a Turing machine, and is capable of simulating any compu-
tation that one might imagine running on a modern-day computer. We denote
by y ← A(x) the process of an algorithm producing the output y when given x
as input. The run-time of a machine is the number of iterations of the above
loop until it halts. The run time of an algorithm is that of the machine that
simulates it. We often think of the run time asymptotically with regards to the
length of the input, and note that it is lower bounded by |x| since the machine
takes as many steps just to fully read the input.

A probabilistic algorithm/machine is an extension of the above construction,
where the underlying deterministic machine is given an additional random tape
as input. We can think of the randomness as a sequence of random coin-flips
that the machine is allowed to make at each step. The above process is denoted
as y ← A(x; ρ) where ρ ∈ {0, 1}?. The length of ρ also imposes a lower bound on
the run-time of A. In some cases where the randomness ρ is implicit, we write
y←$ A(x) to emphasize that y is a sample of some distribution, and we can look
at the probability Prρ[y ← A(x; ρ)].

We say that an algorithm A has oracle access to another algorithm B if A can
call B and receive the output in a single execution step. We denote this by AB.
In some cases, we may also write y ← OB to clarify that A is using the oracle.

2.3 The NP complexity class & SAT
The definition of a language is very broad, and it is therefore useful to categorize
them in different sets with certain properties. We call these categories complexity
classes.

The most well known complexity class is NP which stands for non-deterministic
polynomial time. It represents all statements whose proofs size and verification
time is polynomial in the size of the input. Formally, a language L over an
alphabet Σ belongs to NP if there exists a relation predicate R and a polynomial
P such that

• R(x,w) can be evaluated in time t ≤ P (max{|x|, |w|})

• L = {x ∈ Σ? | ∃w ∈ Σ?,R(x,w) = true, |w| ≤ P (|x|)}

The class P (deterministic polynomial time) is a subset of NP, with an
additional restriction: given x ∈ P, there exists a deterministic algorithm for
finding w that runs in time t ≤ P (|x|). It remains an open question whether
P = NP.

An important problem in this class is the Boolean satisfiability problem, or
SAT. Given a boolean formula C over boolean variables x = (x1, . . . , xn) which
are linked with the AND (∧), OR (∨), and NOT (¬) operators, does there exist
and assignment w = (w1, . . . , wn) ∈ {true, false}n such that C(w) = true? If one
is given a candidate assignment w, we can efficiently check that it satisfies C by
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simply evaluating C(w). Depending on the way C is written, finding such a w
can be either trivial or close to impossible without an exponential amount of
ressources (time and/or space).

The Cook-Levin theorem [Coo71, Lev73] states that SAT is NP-Complete,
which means that for every problem in NP, there exists a polynomial-time
reduction to SAT. In other words, every NP problem can be expressed as SAT
instance.

Alternatively, we can view boolean circuit in SAT as an arithmetic circuit
defined by a set of polynomials p1, . . . , pm ∈ F≤2[X1, . . . , Xn]. For each gate in
the circuit, we define a quadratic equation over the inputs and output variable
which is satisfiable if and only if the polynomial evaluates to 0.

xk = xi ∧ xj ⇐⇒ xk − xi · xj = 0
xk = xi ∨ xj ⇐⇒ xk − xi − xj + xi · xj = 0

xk = ¬xi ⇐⇒ xk(1− xi) = 0

This is sufficient if F = F2, but if we want to allow other fields, we must add n
more constraints of the form xi(1− xi) = 0, ∀i ∈ [n].

This yields an efficient transformation of any circuit C over n variables, to an
instance of quadratic equation satisfiability, or QESAT, whose relation is defined
by:

RQESAT =
{(

(p1, . . . , pm);w
)∣∣∣∣ w ∈ Fn
pi ∈ F≤2[X1, . . . , Xn] pi(w) = 0, ∀i ∈ [m]

}
.

2.4 R1CS
A Rank-1 Constraint System, or R1CS, is is yet another way of formulating
boolean satisfiability problems. Rather than polynomials, we consider 3 matrices
A,B,C ∈ Fm×n a witness w ∈ Fn. Each set of rows {Ai, Bi, Ci}mi=1 of the
matrices then define a polynomial pi ∈ F≤2[X1, . . . , Xn], representing m different
contraints the witness should satisfy:

pi(w) = 〈Ai, w〉 · 〈Bi, w〉 − 〈Ci, w〉 = 0, i ∈ [m].

We can also consider a public input v ∈ Fk to the circuit, by setting z =
(v, w) ∈ Fn for w ∈ Fn−k. Moreover, we can combine all the equations using the
Hadamard product, which performs component-wise multiplication between two
vectors and is represented by the “◦” symbol. This yields the R1CS relation

RR1CS :=
{(

(A,B,C, v) ;w
)∣∣∣∣ A,B,C ∈ Fm×n
v ∈ Fk, w ∈ Fn−k , Az ◦Bz = Cz, z = (v, w)

}
.
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3 Proof systems
The previous section formalized the notions of statements and proofs. In partic-
ular, we saw that we can consider and NP problem in terms of circuits, allowing
us to ask questions like:

“Given a circuit C and public input x,
does there exists a witness w such that C(x;w) = 0?”

This section focuses on interaction models between a prover P and a verifier
V, where P’s goal is to convince V that a common instance x does in fact belong
to some language L.

Here, we consider P and V as interactive machines, an extension to the
construction in § 2.2. Both parties have access to an additional communication
tape where they can write symbols for the other party to read. The machine
A (representing either P or V) is modeled as follows: It maps some input x
and a list of incoming messages m1, . . . ,mn to an outgoing message mn+1 ←
A(x,m1, . . . ,mn). The sequence (x,m1, . . . ,mn) is the n-th partial view of A.
We can think of A as an algorithm that maps an algorithm computes the next
message from a partial view.

The above interaction over k rounds is modeled as follows, where we consider
P and V as probabilistic algorithms with common input x:

Interactive Protocol
Prover Verifier

a1 ← P(x; ρP) a1

b1 b1 ← V(x, a1; ρV)

a2 ← P(x, b1; ρP) a2

...

ak ← P(x, b1, . . . , bk−1; ρP) ak bk ← V(x, a1, . . . , ak; ρV)

Once the interaction is finished, the transcript is the sequence of all messages
exchanged during the protocol and is denoted 〈P x↔ V〉 := (x, a1, b1, . . . , ak, bk)
(the randomness ρP, ρV is implicit). The view of V is the set of all messages
and variables that V has access to at the end of the interaction. It is defined as
ViewV(P x↔ V) := (x, a1, . . . , ak; ρV).

Finally, an interactive protocol is called public-coin, when all of V’s messages
are sampled uniformly from some predefined set, and in particular do not depend
on any private input. When this is the case, then we can directly consider V’s
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randomness ρV = (b1, . . . , bk−1; rV), so that V’s output in rounds 1 to k − 1 are
the corresponding symbol in ρV. We can therefore consider that V’s final output
bk is computed deterministically from ViewV(P x↔ V).

3.1 Interactive Proofs (IP)
Using an interactive protocol to construct proofs of language membership was
formalized in [GMR85], using the name interactive proof. In this model, both
prover P and verifier V are given a common string x ∈ Σ? and must decide
whether x ∈ L or not. We consider both parties as interactive probabilistic
machines, but restrict V’s run-time to poly(n), where n = |x|. Moreover, we
define V’s final message bk as dec ← 〈P x↔ V〉 ∈ {acc, rej} which reflects V’s
decision to accept or reject the statement x ∈ L.

Since we assume both parties to be probabilistic, we need to understand
the distribution of V’s decision PrρP,ρV [dec← 〈P x↔ V〉] rather than one specific
outcome of the experiment. In particular, we are interested in measuring the
probability of V being wrong. This happens either when x ∈ L and V outputs rej,
or when x /∈ L but V still accepts. Intuitively, using a proof system makes sense
when it is hard to prove x, so the first case captures the idea that the protocol
description may not always lead to the correct result. On the other hand, if
an incorrect proof is accepted, then the prover doesn’t actually need to do the
necessary work to find a correct one. We therefore consider the probability of
this happening when the prover behaves arbitrarily (even maliciously). These
properties are respectively referred to as the completeness and soundness.

Formally, an interactive proof system IP for a language L is an interactive
protocol between a prover P and a verifier V such that there exists a polynomial
P and constants εc, εs ∈ [0, 1] such that:

• The run-time of V until termination is bounded by P (|x|),

• If x ∈ L, then PrρP,ρV [〈P x↔ V〉 = rej] ≥ 1− εc,

• If x /∈ L, then PrρP̃,ρV [〈P̃ x↔ V〉 = acc] ≤ εs for all provers P̃.

3.1.1 NP ⊂ IP

Since we are mainly interested proving results about statements in NP, we
must make sure that they are indeed provable using an interactive proof. To
understand why, consider the IP protocol in Figure 1.

Since we assume no run-time bound on the prover it is completely valid to
require it to find the witness as a first step. The verifier must then evaluate
R(x;w) which it can do by definition in polynomial-time.

Assessing the efficiency of this system is a bit awkward, since the run-time
of P is now lower bounded by the time it takes to find w. Therefore, we will
often assume that P is implicitly given w as private input and we can then look
its computational complexity of the protocol in isolation. This type of proof is
called a proof of knowledge which we formalize in the next section.
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NP ⊂ IP
Prover Verifier

w ← P(x; ρP) w dec←
{

acc if R(x;w) = 1
rej otherwise

Figure 1: Interactive Proof for any L in NP

3.1.2 Proof of knowledge

For the class NP, a proof of knowledge [GMR85, BG93] is a special type of
Interactive Protocol where the prover’s goal is to convince a verifier that it does
in fact know a witness that satisfies a relation R.

In this type of protocol, we can concentrate on efficient provers who run
in polynomial-time, rather than unbounded ones since we remove the burden
of finding the witness in the first place. Moreover, we now assume that an
honest prover is explicitly given a witness as private input. The formal definition
is similar to the one for IP but we need to modify the soundness property to
account for the different setting. The relation that must validate is defined as
RL := {(x,w)|x ∈ L, w ∈ W(x)}, where W(x) is the set of all valid witnesses
for x.

To make sure the prover actually knows a valid witness, it should be possible
to efficiently extract this knowledge from the prover. An extractor is a polynomial-
time algorithm Ext which is given access to an arbitrary prover P̃, and returns
the witness w. In other words, the probability of extracting the witness from a
malicious prover should be at least as high as the probability of P̃ convincing
the verifier. Note that the extractor is allowed to rewind the prover. At any
point, it can restore P̃ to one of its previous states, change the remaining unused
randomness and obtain a different outcome.

The formal definition of a proof of knowledge is the following:

completeness If (x,w) ∈ RL, then Pr[acc← 〈P(w) x↔ V〉] = 1.

knowledge soundness e There exists a polynomial-time extractor algorithm
Ext such that if (x,w) /∈ RL, then

Pr[ExtP̃(x)(x) ∈ W(x)] ≥ Pr[acc← 〈P̃(x)↔ V(x)〉]− e.

3.1.3 Zero-Knowledge

When performing a proof of knowledge protocol, it may not be in the prover’s
best interest to leak any information about the witness itself. Indeed, if we take
again the example of the discrete logarithm problem, it is often used to prove
knowledge of a secret key which the prover must keep private.

This property is called zero-knowledge and is defined through a polynomial-
time simulator algorithm Sim which can simulate a prover’s messages against
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an arbitrary verifier Ṽ. In particular, the distributions of Sim(x; ρSim) and
ViewV(P x↔ V) should be z-statistically close over the randomness ρSim, ρP, ρV.

3.1.4 Fiat-Shamir

In many real world scenarios, it is not always practical to run a protocol
interactively, since this requires both parties to be online at the same time. For
public-coin interactive proofs, a prover can create a single message π which
represents the full interaction. This technique first appeared in [FS87] in the
context of signature schemes, and is often referred to as the “Fiat-Shamir”
transform.

We define the concept of a random-oracle, which is an idealized function
ρ : {0, 1}? → {0, 1}λ. Each time it is called on some fresh input x (that is, ρ(x)
has not yet been requested), it returns y←$ {0, 1}λ. Whenever ρ(x) is requested
after that, the same y is returned. In practice, ρ will be instantiated through some
appropriate collision-resistant hash function like SHA-2 or BLAKE2. Assuming
the existence of a random oracle makes it easier to prove the security of a
protocol, and was used in [PS96] to this end for many existing signature schemes.

The idea of the transformation is quite simple: In the original protocol,
whenever the verifier is instructed to send a uniformly sampled message bi, the
prover instead obtains this messages by querying ρ with input the instance x and
the sequence of messages it has previously sent. That is, bi ← ρ(x, a1, . . . , ak−1).
The randomness rV used in V’s final decision message is set to ρ(x, a1, . . . , ak).

The final proof π is then set to (a1, . . . , ak). To verify it, a verifier simulates
the original protocol by recomputing all the b1, . . . , bk−1 as well as rV and setting
ρV = (b1, . . . , bk−1, rV). Finally, it verifies that V(x; ρV) returns acc.

Note that when a hash-function is used, we call the protocol an argument of
knowledge rather than a proof of knowledge. This distinction is due to the fact
that, theoretically, a computationally unbounded prover would be able to find
collisions allowing it to cheat.

3.1.5 Sum-Check Protocol

The Sum-Check protocol introduced by Lund et al. [LFKN90] was used to prove
that co-NP ⊂ IP 1. Without diving into the details of this inclusion, this section
describes one of the main ideas behind this proof 2. It involves proving the
following statement about summing evaluations of a polynomial over some set:

Suppose that we are given some polynomial p ∈ F≤d[X1, . . . , Xn] and an
integer K, does the following hold?

K =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn). (1)

Notice that verifying this sum directly requires the evaluation of p over 2n
different inputs. Using the Sum-Check protocol, a verifier can be convinced with

1The class co-NP is the complement of NP: L ∈ co-NP ⇐⇒ Σ? \ L ∈ NP
2This exposition is inspired from Justin Thaler’s 2017 lecture notes [Tha17].
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overwhelming probability that the sum claimed by the prover is correct, with
the following efficiency (we assume for simplicity that the degree of p in Xj is d
for all j ∈ [n], and that the cost of evaluating p is T ):

communication rounds V run-time P run-time εc εs
O(n · d) n O(n · d) + T O(2n · T ) 0 ≤ n · d/|F|

The n round protocol is described in Figure 2, where we assume that the
polynomials pj(Xj) sent by P are represented by their d+ 1 coefficients. The
verifier can then evaluate pj using O(n) F-multiplications.

At the end of the first round, V receives p1 and verifies that p1(0)+p1(1) = K.
Unfortunately, a cheating prover could easily find a different p̃1 which would
pass this test, so the verifier must now make sure that

p1(X1) ≡
∑

x2,...,xn∈{0,1}

p(X1, x2, . . . , xn).

Since both sides of this equation are degree d polynomials over F, the
Schwartz-Zippel lemma can be used to obtain a probabilistic guarantee that the
claim holds:

Prr1 ←$ F

p̃1(r1) =
∑

x2,...,xn∈{0,1}

p(r1, x2, . . . , xn) | p̃1 6= p1

 ≤ d

|F|
. (2)

The verifier therefore responds with with r1←$F. Letting K ′ := p1(r1) and
p′(X2, . . . , Xn) := p(r1, X2, . . . , Xn), we obtain another instance of Equation 1
in only n− 1 variables:

K ′ =
∑

x2∈{0,1}

∑
x3∈{0,1}

· · ·
∑

xn∈{0,1}

p′(x2, . . . , xn).

The parties repeat these steps n times, until P sends pn(Xn) for which V
verifies that pn−1(rn−1) = pn(0) + pn(1). Rather than responding with rn←$F,
V instead performs its only evaluation of p at (r1, . . . , rn) which it compares
with pn(rn). The verifier accepts if all checks pass.

The soundness error is upper bounded by (d · n)/|F|. For n > 1, we can con-
sider rounds 2, . . . , n of Sum-Check(K, p(X1, . . . , Xn)) as the parties performing
the protocol Sum-Check(p1(r1), p(r1, X2, . . . , Xn)). By induction, the soundness
error for the reduced instance is ≤ (d · (n− 1))/|F|, to which we add the error
probability obtained in Equation 2.

To understand why we might be interested in such a problem, consider
some boolean circuit C : {0, 1}n → {0, 1}. Rather than asking if there exists a
valid assignment for C (SAT), we can also wonder how many satisfy C (#SAT)
Recall from § 2.3 that we can represent C as some n-variate polynomial p over
F of maximal individual degree d, such that C(x) ≡ p(x) for all x ∈ {0, 1}n.
Therefore, verifying that H is the number of such assignments, reduces to
checking Equation 1.
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Sum-Check(K, p(X1, . . . , Xn))
Prover Verifier

p1(X1) :=
∑

x2,...,xn∈{0,1}

p(X1, x2, . . .) p1(X1) K
?= p1(0) + p1(1)

r1 r1 ←$F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . round j = 2, . . . , n− 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pj(Xj) :=
∑

x`∈{0,1}
j+1≤`≤n

p(. . . , rj−1, Xj , xj+1, . . .) pj(Xj) pj−1(rj−1) ?= pj(0) + pj(1)

rj rj ←$F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . round n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pn(Xn) := p(r1, . . . , rn−1, Xn) pn(Xn) pn−1(rn−1) ?= pn(0) + pn(1)

rn ←$F

pn(rn) ?= p(r1, . . . , rn)

Figure 2: Sum-Check protocol

Beyond proving theoretical results though, one very powerful property of
Sum-Check is that the verifier’s run-time is logarithmic compared to the naive
verification. It essentially allows us to delegate most of the work to some prover.
This technique was used in [GKR08] to construct an interactive protocol for
proving the evaluation of a layered arithmetic circuit C : Fn → F of constant
depth d and size S(n). While the prover runs in time poly(S(n)), the verification
is only Õ(n+ d logS(n)) (Õ hides a polynomial in logn)

3.2 Probabilistically Checkable Proofs (PCP)
One big limitation of IP is that the length of prover’s messages sets a lower
bound on the run time of V. Indeed, the verifier must read the message to be
able to make its final decision.

Let us consider a slightly different computation model, where the prover
produces some proof string Π ∈ Σ` and the verifier is then given oracle access
to it via an oracle OΠ. The verifier is given a random string ρ ∈ {0, 1}r that is
used to compute q queries i1, . . . , iq. It then sends these queries to the oracle,
which responds with a sequence (Π[i1], . . . ,Π[iq]), where Π[i] is the i-th symbol
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PCP[r, q]
Prover P Oracle Verifier V

Π← P(x) Π OΠ i1, . . . , iq ik ← V(x; ρ)

Π[i1], . . . ,Π[iq] dec← V(x,Π[i1], . . . ,Π[iq]; ρ)

Figure 3: PCP proof model

of Π. Given this response, V decides whether or not x ∈ L.
Formally, we can think of V as having access to an extra communication tape

with the oracle. To read a symbol, it first writes an index i of Π on the tape,
and the oracle will then write Π[i] in the cell next to it. Figure 3 gives some
more intuition about this interaction, where we consider that V interacts with a
third party representing the oracle for Π.

This proof model is called a probabilistically checkable proof (PCP) [ALM+92,
AS92]. It defines a complexity class PCP[r, q], where r = r(n) is the number of
random bits used by V and q = q(n) is the number of symbols of Π that V reads.
The verifier is modeled as a probabilistic polynomial time oracle algorithm VΠ.
The system satisfies the following properties:

completeness If x ∈ L, and Π← P(x), then Prρ←{0,1}r [VΠ(x; ρ)] ≥ 1− εc

soundness If x /∈ L, for all Π̃ ∈ Σ` then Prρ←{0,1}r [VΠ̃(x; ρ)] ≤ εs

To get some intuition of what these parameters mean, we can consider
different values for r, q and see what complexity classes they represent.

• PCP[r = O(logn), q = 0] = P: V has no information about Π and we can
define a deterministic polynomial time algorithm A(x) which runs V(x; ρ)
for all ρ ∈ {0, 1}r.

• PCP[r = 0, q = O(logn)] = P: V obtains a deterministic fixed witness
w ∈ Σq. A deterministic polynomial time algorithm A(x) could simulate V
over all possible witnesses of size r.

• PCP[r = 0, q = poly(n)] = NP: V is a deterministic algorithm that reads a
witness w in full, and decides whether x ∈ L. This characterizes NP.

A more complicated result is the PCP theorem [ALM+92] which states:

PCP[O(logn),O(1)] = NP.

Essentially, a verifier who reads only a constant number of symbols from some
proof can be convinced with high probability that the proof is valid. For an
informal comparison, imagine a long mathematical proof written in a book with
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many pages such that reading and verifying this proof would not actually be
practical. Instead, a verifier could choose to verify only 10 pages randomly. It
these are all consistent, then it would be convinced with high probability that
the full proof is correct.

From PCPs to Interactive Agruments In practice, it is not clear how one
could actually instantiate the oracle paradigm between a prover and a verifier.
We might consider simplifying this exchange by letting the prover act as the
oracle, so that when the verifier requests a symbol of Π it is actually the prover
who responds. Unfortunately, a malicious prover could adapt their responses to
make the verifier always accept. In our informal example, when we request a
specific page, the prover could alter its content to make sure everything on it
was correct.

We explore a technique due to Kilian and Micali [Mic94, Kil92] which uses
the random-oracle model to transform a PCP into an Interactive Proof. When
the random-oracle is modeled though a collision resistant hash function, we refer
to it as a computationally sound interactive argument, for the same reasons
detailed in § 3.1.4.

The main idea is to have the prover first commit to the proof Π in such the
commitment is short, and it is possible to extract a decommitment string for
each symbol of Π. Once V receives this the commitments, it sends back its list
of queries for Π. The prover responds with those selected locations, along with
a decommitment string for each symbol. Finally, the verifier ensures that they
are consistent with the previous commitment and runs the original PCP verifier.
It simulates the proof oracle using the now-verified symbols from P.

The most straightforward way to instantiate this commitment scheme is to
use Merkle Trees [Mer88]. We start by taking some random oracle ρ whose
output is in {0, 1}λ. To build a Merkle tree from Π ∈ Σl (we assume for simplicity
that l is some power of 2), we start by hashing each symbol of Π which we
consider as the leaves of the tree. We then build up the tree by setting each
node’s value to be the hash of the concatenation of its two child nodes. The
height of this tree is log (l), and we define its root as rt, which can be thought of
the commitment to Π. Whenever the prover sends a value Π[i], it also provides
an authentication path api consisting of the values of all sibling nodes on the
path to the root of the tree. Upon reception, the receiver has all the necessary
information to recompute rt, without needing access to any other symbol of Π.
It accepts the value if the computed root matches the one previously committed.

A description of a Merkle tree with depth 4 is given in Figure 4. For example,
the authentication path for Π[4] would be (h3, h12), and the receiver computes
rt′ = ρ(h12‖ρ(h3‖ρ(Π[4]))).

With this technique in mind, the following Protocol 5 shows the transforma-
tion in action. We note that in this protocol, we have two sets of parties (P,V)
and (PPCP,VPCP). The latter are those from the original PCP system, and are
essentially simulated by the IP parties.
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rt← ρ(h12‖h34))

h12 ← ρ(h1‖h2)

h1 ← ρ(Π[1]) h2 ← ρ(Π[2])

h34 ← ρ(h3‖h4)

h3 ← ρ(Π[3]) h4 ← ρ(Π[4])

Figure 4: Merkle tree for Π ∈ Σ4

PCP Interactive Argument
Prover P Verifier V
Π← PPCP

rt← MerkleRootρ(Π) rt

{ij}qj=1 {ij}qj=1 ← VPCP

{
apj ← AuthPathρ(Π, ij)

}q
j=1

{
(apj ,Π[ij ])

}q
j=1 CheckPathsρ(rt, (apj ,Π[ij ])qj=1)

dec← VΠ[i1],...,Π[iq ]
PCP

Figure 5: PCP Interactive Argument

Linear PCPs

A Linear PCP (LPCP) [IKO07, BCI+13, PHGR13, BCTV14] is special type of
PCP where the prover is restricted to only sending a linear function of the form
f : Fn → F, x 7→ 〈x, y〉 for some y ∈ F. This function is encoded as a string Π,
which is the concatenation of all evaluations of f over Fn. To query f at x, the
verifier reads index x of Π.

Without the LPCP abstraction, the prover could send y in full (increasing the
communication complexity by n field elements), and have the verifier compute
〈x, y〉 itself (at the cost of O(n) field operations). Instead with an LPCP, all this
work is shifted to prover, resulting in better performance for the verifier.

Unfortunately, the verifier cannot know for certain that Π encodes f correctly.
A malicious prover could very well have sent an arbitrary function f̃ : Fn → F.
Blum et al. [BLR93] came up with a probabilistic test which can be used
to check that f is at least δ-close to some linear function. Here, “closeness”
is defined by the Hamming distance between two functions f, g : Fn → F
∆(f, g) = Prx←F[f(x) 6= g(x)], and we take δ to be the minimum of ∆(f, g) over
all linear functions g.

To perform the test, V queries f(x), f(y), f(x + y) for randomly sampled
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x, y←$F and checks that f(x) + f(y) = f(x+ y). If f is δ-far from any linear
function, the probability that the check passes is ≤ 1−min {1/6, δ/2}.

We can therefore compile a LPCP into an ordinary PCP by wrapping the
inner LPCP with the additional linearity test. The overall soundness error is
that of the LPCP plus the probability of accepting a non-linear function (though
this test can be repeated to reduce it to acceptable levels).

3.3 Interactive Oracle Proofs (IOP)
After describing IP and PCP separately, one might wonder what kind of system
is possible when we try “combining” them together. Kalai and Raz [KR08]
introduced Interactive PCPs, but only considered the case where an IP verifier
has oracle access to the prover’s first message. This model was later generalized
by Ben-Sasson et al. as Interactive Oracle Proofs (IOP) [BCS16], where all of
the prover’s messages can be considered as oracles.

3.3.1 Interactive Oracle Protocol

We start by considering the oracle variant of Interactive Protocols § 3.1. A
k-round interactive oracle protocol between two probabilistic algorithms P and
V is defined as follows: For i ∈ [k], the i-th round is initiated V who sends
mi ← Vf1,...,fi−1(m1, . . . ,mi−1; ρV) ∈ {0, 1}ui . The prover P responds with
fi ← P(m1, . . . ,mi; ρP) ∈ {0, 1}li to which V then has oracle access. V’s final
message mk+1 is the decisions dec ∈ {acc, rej} denoted 〈P↔ V〉.

The protocol is public-coin when all of V’s messages mi do not depend on any
private input. We can assume without generality that they are sampled uniformly
from {0, 1}ui , and that any queries to P’s messages are postponed until the last
round when V makes its decision (we can thus view ρV as (m1, . . . ,mk; rV) where
rV is some randomness used for V’s decision). Such a protocol is depicted in
Figure 6.

3.3.2 Interactive Oracle Proofs

An Interactive Oracle Proof System is k-round interactive oracle protocol defined
by some relation R and some soundness parameter εs ∈ [0, 1). In addition it
must satisfy the following properties:

completeness For all (x,w) ∈ R, Pr[acc← 〈P(x,w)↔ V(x)〉] = 1.

soundness For all x /∈ LR and all P̃, Pr
[
acc← 〈P̃↔ V(x)〉

]
≤ εs.

In addition, we can also require that the IOP system is a proof of knowledge
and satisfies honest-verifier zero-knowledge:

proof of knowledge e There exists a probabilistic polynomial-time extractor
algorithm Ext which may interact with an arbitrary prover P̃ via rewind-
ing (at any moment, P̃ can be restored to a previous state), such that
Pr[(x,ExtP̃(x)) ∈ LR] ≥ Pr[acc← 〈P̃↔ V(x)〉]− e for all x.
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Interactive Oracle Protocol (Public Coin)
Prover Verifier

m1 m1 ←$ {0, 1}u1

f1 ← P(m1; ρP) f1

...

mk mk ←$ {0, 1}uk

fk ← P(m1, . . . ,mk; ρP) fk dec← Vf1,...,fk (m1, . . . ,mk; ρV)

Figure 6: Interactive Oracle Protocol

honest verifier z-statistical zero-knowledge There exists a probabilistic
polynomial-time simulator algorithm Sim such that for every (x,w) ∈
LR, the distribution of Sim(x) and the set of query responses by V in
P(x,w)↔ V are z-close.

The intuition behind these properties are the same as in § 3.1.
The complexity of the system is evaluated through the following quantities:

verifier time tP the number of steps for which the prover P runs over the
course of the whole interaction.

verifier time tV the number of steps for which the verifier V runs over the
course of the whole interaction.

proof length p the total number of bits communicated by the prover to V.

query complexity q number of bits queried by V to P’s messages f1, . . . , fk

We notice a few differences between the above definition, and the one pre-
sented in § 3.1. For starters, we directly assume that an honest prover is given
the witness as private input. This more closely resembles real-world scenarios
where the goal is to prove the correct execution of a circuit run with some private
input. Moreover, we also set the completeness probability to 1, since all the
protocols we present achieve this requirement. The definitions here are taken
from [BCS16], and we refer the reader to it for a more complete description of
IOP.
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3.3.3 Non-interactive Random Oracle Proofs for IOP

Transforming an IOP into an non-interactive proof in the random oracle model
follows a similar pattern to the one we saw for PCPs 3.2. In the general case, we
can apply the transformation from [BCS16] which generalizes [Mic94]. We note
that it only works when the underlying IOP is public-coin, since we can then
simulate V’s messages using the random oracle.

Let ρ1, ρ2 be two random oracles (used for V’s messages and the Merkle tree
respectively), and set σ0 ← ρ2(x). Each round i for i = 1, . . . , k proceeds as
follows:

• sample V’s messages mi ← ρ1(x‖σi−1),

• send mi to P and obtain fi,

• compute the Merkle-tree root rti of fi using ρ2,

• set σi ← ρ2(rti‖σi−1).

Once the interaction is finished, set V’s randomness ρV to (m1, . . . ,mk; ρ1(x‖σk))
and simulate Vf1,...,fk (x; ρV). When V makes a query to fj and receives aj , save
the authentication path apaj

for aj . The final proof is

π =
(

(rt1, . . . , rtk), (apa1 , . . . , apaq
), σk

)
.

To verify π, the verifier recomputes (m1, . . . ,mk) and (σ1, . . . , σk) and checks
that the computed σk matches the provided one. It then computes ρV the same
way and simulates V with the queries provided in the proof. If verification passes,
then it checks the authentication paths and accepts π if these pass too.

The efficiency of the resulting non-interactive proof π is given in the following
table, where the notation Oλ(·) hides any powers of the security parameter
λ. This gives us a lot more intuition about how we want to optimize the
parameters in the original IOP. Keeping the number of rounds k low yields
better performance overall. Verification time and proof length are a lot more
dependant on the number of queries, which is why we will try to keep these to a
minimum.

|π| t′P t′V ε′s
Oλ(k + q · log p) Oλ(k + p) + tP + tV Oλ(k + q) + tV εs + negl(λ)

3.3.4 Algebraic IOPs

Most often, adding more capabilities to a proof system will make it more
expressive. We can wonder though if there is anything to gain from restricting
the proof system. This idea was already explored in § 3.2, where we considered
PCPs where the prover only sends linear functions. However, this approach is
not efficient for the prover who must then compute the full evaluation table for
f : Fn → F.
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A similar type of restriction can be established for IOPs which we will refer to
as Algebraic IOPs. This model enforces the prover’s messages to be polynomials,
which the verifier can then query at any point it desires. The verifier is then
able to learn a lot more information with only a single query.

To transform an algebraic IOP into a standard IOP, we need to find an
efficient encoding for polynomials, as well as an appropriate test for it. In the
Sum-Check protocol from § 3.1.5, we simply considered that the prover sent
polynomials as the full list of coefficients, which the verifier then used to obtain
evaluations.

If a prover needs to send a vector v ∈ Fn, it must find an appropriate
representation of v as a polynomial fv(X). A simple approach would be to
simply set fv(X) =

∑n−1
i=0 vi−1X

i, but this is not useful since it is not clear
how the verifier could recover some vi with few calls to fv. Instead, the prover
computes the low-degree extension of v, which is a degree n polynomial such
that fv(i) = vi for all i ∈ [n].

In what follows, we first describe Reed-Solomon Codes which we will use
to encode polynomials. We then present FRI, an efficient IOP for testing the
correctness of these encodings. Finally, we take a deeper look at how these
techniques work for low-degree extensions.

Reed-Solomon Codes A Reed-Solomon Code is defined by a rate ρ ∈ [0, 1] and
an evaluation domain L ⊆ F. It defines a mapping from the set of polynomials
of degree less than ρ|L| to codewords in the set RS[ρ, L]. The codeword of a
polynomial f(X) is described by a function cf : L → F which represents the
evaluation of f over L (that is, cf (`) = f(`) for all ` ∈ L). When the prover
sends cf , it actually sends a list of all {f(`)}`∈L, where the order of the elements
in L is agreed upon beforehand. We can then consider the encoding function for
RS[ρ, L] as cf ← Enc(f(X)) = {f(`)}`∈L, for all f ∈ F<ρ|L|[X].

The distance ∆(cf , cg) between two Reed-Solomon codewords is taken as
their relative Hamming distance

∆(cf , cg) = |{` ∈ L|cf (`) 6= cg(`)}|
|L|

.

The codewords have the additional property that ∆(cf , cg) > 1 − ρ whenever
cf 6= cg. More importantly though, for any c̃ : L→ F such that ∆(c̃, cf ) < 1−ρ

2 ,
we can uniquely decode c̃ as f . This property makes it an error correcting code,
as the original polynomial can always be recovered as long as c̃ agrees with with
some correct cf in at least (1 + ρ)|L|/2 points.

An issue arrises though when we consider the BCS transformation from
§ 3.3.3, since the root of the Merkle tree only contains commitments to the
values f(L). If the verifier queries y := f(z) for some z ∈ F\L, the prover cannot
provide any authentication path for y. To solve this issue, the verifier constructs
the simulated polynomial g(X) := f(X)−y

X−z and corresponding codeword cg(`) :=
cf (`)−y
`−z ,∀ ` ∈ L. If y was wrong, then (X−z) does not divide f(X) and therefore

cg /∈ RS[ρ, L] since g is a rational function. Therefore, the verifier must test that

19



both cf and cg are at least δ-close to actual codewords in RS[ρ, L] using the FRI
protocol we present next.

3.3.5 Low-Degree Testing with FRI

The Fast Reed-Solomon IOP of proximity (FRI) [BBHR17] is a special type
of IOP protocol, which provides a probabilistic guarantee that a given oracle
cf : L → F is at most δ-far away from some codeword in RS[δ, L]. Following
a similar construction as with Linear PCPs, this test can be run alongside an
algebraic IOP to test the correctness of the oracles. In particular, if we define
D := dρ|L|e, the verifier is convinced the answers it received from the oracle
were indeed evaluation of a polynomial f with degree d < D. For simplicity, we
will assume that ρ is such that D = ρ|L| ∈ N.

Before explaining the details of FRI, we can describe a naïve way the test
could be performed. The verifier starts by queries cf at D randomly chosen
points in L, and can reconstruct a candidate f̃ using polynomial interpolation
(explained in the next section). It could then request additional points of cf
and test whether if matches with f̃ . Through the Schwartz-Zippel lemma, the
probability of passing this test is ≤ (D − 1)/(|L| −D), since deg(f̃) < D, and
there are |L| −D remaining points to sample. This may be acceptable both in
terms of number of queries and error probability when D is small and L is large,
but for the general case FRI will be a lot better. In particular, it requires only
O(log d) oracle queries.

To understand how FRI works, we will consider cf : L→ F, which supposedly
corresponds to the evaluation over L of a polynomial f of degree d < D. FRI
requires that L be either an affine subspace of F or a multiplicative subgroup of
F?. We will restrict ourselves to the latter case and define L := 〈w〉, where the
order of w is a power of 2, say 2k. We can then define the sequence of domains
{Li} such that L0 = L, Li = L2

i−1 = 〈w2i〉 for i > 0 (and Li = {1} for all i ≥ k).
Note that |Li| = |Li−1|/2 = 2k−i and Li ⊂ Li−1 for i ≥ 1.

The main idea behind the FRI protocol is reduce cf ∈ RS[ρ, L] to c′f ∈
RS[ρ, L′] where |L′| � |L|, making it possible to test c′f at all points in L′. Note
that since the rate is the same, the resulting c′f would be the codeword of a
polynomial with maximum possible degree d′ = ρ|L′| � D. The full protocol is
described in Figure 7

In each round i of the protocol, the verifier has oracle access to ci−1 : Li−1 →
F, and wants to check that it is a codeword in RS[ρ, Li−1] (we set f0 = f , c0 = cf
and L0 = L for the first round). V start by sending αi←$F to P. The prover
responds with ci : Li → F which it computes as

ci(`2) := ci−1(`) + ci−1(−`)
2 + αi

ci−1(`)− ci−1(−`)
2` , ∀ `2 ∈ Li.

If ci−1 was the evaluation of a polynomial fi−1 with degree di−1, then ci would
be the codeword of some fi with degree di ≤ di−1/2 such that

fi(X) = even(fi−1)(X) + αi · odd(fi−1)(X).
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The odd and even functions return a polynomial of degree at most half the
original one, taken by considering only the odd/even coefficients respectively.
When the prover performs this step correctly, the rate ρ is preserved since
di ≤ di−1

2 < 1
2ρ|Li−1| = ρ|Li|. The verifier is then left to check that ci ∈ RS[ρ, Li]

which it does by repeating the above procedure.
After performing log(d) = r rounds, the resulting cr would be constant which

the verifier can easily check. It must also ensure however that the sequence of
{ci}ri=0 are consistent with each other. To do so, V samples µ←$L and checks

ci+1(µ2i+1
) ?= ci(µ2i) + ci(−µ2i)

2 + αi
ci(µ2i)− ci(−µ2i)

2µ2i ∀ i = 1, . . . , r.

By using powers of µ, the verifier reuses the computed ci(µ2i) and only queries
ci(−µ2i), setting the total number of queries for this check to 2 · r.

The total number of queries is thus O(log d), and the communication com-
plexity is |L1|+ · · ·+ |Lr| =

∑r
i=1

|L|
2i = O(|L|) field elements.

Given a relative distance parameter δ, the soundness error of FRI is upper
bounded by 1−δ. This bound is conjectured [BBHR17] to be 1−δ+(|L|/|F|)O(1),
but careful analyses [BGKS20, BSKR10] have only been able to show loose
bounds. The soundness error can always be reduced invoking multiple iteration
in parallel, in exchange for worse efficiency.

Finally, we look at the run-time of both parties. The prover computes
each ci by combining evaluations of ci−1 over all of Li−1, for a total of O(|L|)
operations. In each round, the verifier only performs a constant number of
operations, making its total O(log |L|). Together with previous figures, we
obtain the following efficiency table.

rounds queries communication tV tP εs
O(log d) O(log d) O(|L|) O(log d) O(|L|) “1− δ”

Low-degree Extensions With the power of FRI in hand, we take a slight
detour to explain how ordinary vectors v ∈ Fn can be encoded with polynomials.

We start by considering a slightly different representation of v by viewing
it as a function v : H → F with H ⊆ F and |H| = n. With a given bijection
int : H → [n], we have v(a) = vint(a) for all a ∈ H. For clarity, we will identify
FH with Fn and for v ∈ FH , va = vint(a), for a ∈ H.

We define the low-degree extension of v ∈ FH as the unique polynomial
fv(X) ∈ F<|H|[X] such that fv(a) = va, for all a ∈ H. It can be explicitly
represented as

fv(X) =
∑
a∈H

La(X) · va, where LH,a(X) =
∏

b∈H\{a}

X − b
a− b

.

The set {LH,a(X)} is referred to as a Lagrange basis for H and has the property
that LH,a(a) = 1 and LH,a(b) = 0 for all a 6= b ∈ H.
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Protocol FRI(c0 : L→ F,RS[ρ, L])
Prover P(c0) Verifier Vc0

µ←$F, µi ← µ2i+1
∀ i = 0, 1, . . . , r

α1 α1 ←$F, γ0, γ0 ← Oc0 (µ0),Oc0 (−µ0),

c1 := Fold(c0, α1) c1 : L1 → F γ1 ← Oc1 (µ1), γ1
?= γ0 + γ0

2 + α1
γ0 − γ0

2µ0

...

αr αr ←$F, γr−1 ← Ocr−1 (−µr−1)

cr ← Fold(cr, αr) cr : Lr → F γr ← Ocr (µr), γr
?=
γr−1 + γr−1

2 + αr
γr−1 − γr−1

2µr−1

cr
?
∈ RS[ρ, Lr]

Figure 7: FRI Protocol

When we take H = 〈w〉 ⊂ F? such that the order of w is a power of 2,
we can evaluate {La(τ)} for any τ in O(n) field operations. Taking the linear
combination with {va} yields fv(τ). We refer the reader to [BCG+13, Appendix
E.2] for more details about this optimization.

When the prover sends fv(X) as an oracle, it must evaluate fv over the full
domain L. Since both H and L are cyclic groups whose order is a power of 2 (for
L this was a requirement for FRI), we can exploit the Fast Fourier Transform.

Applying FFTL(f) to a polynomial f of degree < |L| returns the list of eval-
uations of f over L, performing the same operation as Enc for Reed-Solomon en-
coding. Moreover, due to the special field structure, it requires only O(|L| log |L|)
field operations.

The reverse operation, or Inverse Fast Fourier Transform is denoted IFFTH .
Given a set of points indexed by H, it returns the coefficients of a polynomial of
degree < |H| which interpolates these points. It also runs in O(|H| log |H|).

For a vector v ∈ FH , the prover can compute its low-degree extension
fv(X)← IFFTH(v) and the corresponding RS codeword cfv

← FFTL(fv(X)) in
time O(|H| log |H|+ |L| log |L|).
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4 Aurora, Fractal, Marlin
In the two previous sections, we spent a lot of time explaining many different
building blocks that can be used to construct a zkSNARK. The first step requires
arithmetizing the statement being proved, yielding for example and R1CS relation.
Then one must decide on what type of computation model we want between the
prover and the verifier. Many recent proof systems are based on the IOP model,
as it is very expressive and through appropriate tools like the BSC transform
§ 3.3.3 can easily be made non-interactive with minimal overhead. Moreover,
the FRI protocol § 3.3.5 allows us to work in the algebraic IOP model, where
polynomial evaluation is efficient for the verifier.

While there are many variations on the above “recipe”, we chose to present
3 different protocols which follow these ideas. They are respectively named
Aurora [BCR+19], Marlin [CHM+20], and Fractal [COS20], and all follow a very
similar construction.

Aurora and Fractal have The rather unique property among recent proof
systems of being plausible post-quantum, since they do not rely on any crypto-
graphic assumption beyond ordinary hash function. Moreover, they are universal,
in the sense that they do not depend on any existing trusted setup. Marlin on the
other hand depends on pairings which are used to replace the Reed-Solomon/FRI
paradigm.

We will start by describing Aurora which both other proof systems build upon.
For Marlin, we present the concepts of holography and polynomial commitments
and see how they can greatly increase performance. Finally, proof composition is
described in Fractal, which can be thought of a “proofs of proof verification”.

Algebraic IOPs for R1CS

For what follows, we recall the structure of an R1CS problem defined its instance
x = (F,m, n, k, (A,B,C), v) and witness w ∈ Fn−k with A,B,C ∈ Fm×n and
v ∈ Fk. Together, the pair (x,w) satisfies the following relation: n∑

j=1
Ai,jzj

 ·
 n∑
j=1

Bi,jzj

 =

 n∑
j=1

Ci,jzj

 ∀ i ∈ [m],

where z = (v, w) ∈ Fn. Using the Hadamard entry-wise product ◦, it can be
written more succinctly as Az ◦Bz = Cz. This relation can be further broken
up by considering zM := Mz for M = A,B,C, so that

Az ◦Bz = Cz ⇐⇒ zA ◦ zB = zC and zM = Mz, ∀M = A,B,C

We are now left with two simpler problems:

lincheck Given zM ∈ Fm, z ∈ Fn, and M ∈ Fm×n, prove that zM = Mz.

rowcheck Given zA, zB , zC ∈ Fm, prove that zA ◦ zB = zC
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Before moving further, we make some additional simplifications which ease
up notation, and facilitate the exposition. In particular, we set k = 0 and m = n
so that v = ∅, z = w, and M ∈ Fn×n is square.

We recall that in the context of an algebraic IOP the prover can send vectors
as polynomials by computing their low-degree extension. Before starting, the
parties agree on a common cyclic3 group H ⊆ F?. The prover then computes
z, zA, zB , zC ∈ FH as described, and sends to V their respective low-degree
extensions fz, fAz, fBz, fCz ∈ F<n[X]. The verifier is now left to check the two
following two polynomial relations:

lincheck For M ∈ {A,B,C}: fMz(a) =
∑
b∈HMa,b · fz(b), ∀ a ∈ H.

rowcheck fAz(a) · fBz(a)− fCz(a) = 0, ∀ a ∈ H.

Once both these facts are checked, the verifier must also ensure the correctness
of the polynomial oracles using for example FRI.

Polynomial Tips & Tricks

Before proceeding, we need to recall some basic facts about polynomials.
We define the vanishing polynomial for a set H ⊆ F as the degree |H|

polynomial ZH(X) such that ZH(a) = 0 for all a ∈ H. For arbitrary H, it is
defined as ZH(X) :=

∏
a∈H(X − a). When we consider H as a cyclic subgroup

H = 〈w〉, ZH can be computed in O(log |H|) field operations by noticing the
following:

ZH(X) =
|H|−1∏
i=0

(X − wi) = X |H| − 1.

The following lemma will prove very useful when we explore a variation of
Sum-Check.

Lemma. Let H be a subgroup of F?, and let f ∈ F<|H|[X]. Then∑
a∈H

f(a) = |H| · f(0).

Proof. Write f(X) as f(X) =
∑|H|−1
i=0 ciX

i, and assume H = 〈w〉 for some
w ∈ H. We then have

∑
a∈H

f(a) =
∑
a∈H

|H|−1∑
i=0

cia
i

 =
|H|−1∑
i=0

ci ·

(∑
a∈H

ai

)
.

Looking more closely at the inner sum for each i, we notice

∑
a∈H

ai =
|H|−1∑
j=0

(
wj
)i =

|H|−1∑
j=0

(
wi
)j =

{
|H|, if i ≡ 0 mod |H|
0, otherwise.

3We can also consider affine subspaces of F as is done in [BCR+19].

24



Therefore, ∑
a∈H

f(a) = c0 · |H| = |H| · f(0).

We also recall polynomial division: Given H ⊆ F and a polynomial f(X) of
degree d > |H|, there exist two polynomials g(X), h(X) such that

f(X) = h(X) · ZH(X) + g(X), where deg g < |H| and deg h = d− |H|.

First, notice that if f(a) = 0 for all a ∈ H, then g ≡ 0. Therefore, we can state
that f vanishes on H if and only if there exists a polynomial h of degree d− |H|
such that f(X) = h(X) · ZH(X).

4.1 Aurora
The Aurora protocol [BCR+19] combines many of the tools we have seen up till
now. While we can technically describe it as an algebraic IOP, the authors use
the term Reed-Solomon Encoded IOP since the techniques used depend heavily
on the FRI low-degree test for the oracles. In particular, they directly refer to
the polynomials sent by the prover as Reed-Solomon codewords, and most of
the checks performed by the verifier are reduced to checking whether the oracle
for the polynomial is δ-close to some codeword with predefined rate. In other
words, it checks whether the degree of the polynomial is correct. This technique
is at the heart of the univariate Sum-Check protocol which we now present.

4.1.1 Univariate Sumcheck

The Sum-Check protocol we saw in § 3.1.5 considered multivariate polynomials
over {0, 1}n. Instead, we are interested in proving

∑
a∈H f(a) = γ for any

polynomial f ∈ F[X] of degree d, and γ ∈ F.
In order to take advantage of the above lemma, we first decompose f as

f(X) = h(X)ZH(X) + (Xp(X) + γ/|H|) (3)

where deg p < |H| − 1 and deg h = d− |H|. If we set g(X) = Xp(X) + γ/|H|,
then this is simply the result of applying the polynomial division of f by ZH .
Moreover, we have∑

a∈H
f(a) =

∑
a∈H

h(a)ZH(a) + g(a) =
∑
a∈H

g(a) = |H| · g(0) = γ.

In the univariate Sum-Check protocol, the verifier is given f and γ. To prove
that Equation 3 holds, the prover sends p, and the verifier can then simulate
queries to h by querying f, p and evaluating:

h(X) := f(X)−Xp(X) + γ/|H|
ZH(X) .
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The verifier must therefore only check that deg(h) ≤ d− |H| and deg(p) ≤
|H| − 1, which can be done once again using FRI. If the prover has malicious by
either claiming a wrong sum, or submitting inconsistent polynomials, then ZH
would not divide (f −Xp+ γ/|H|). The function h would represent a rational
function, which would be detected through the low-degree test.

Note: When working with algebraic IOPs, functions that the verifier simulates
through previously sent oracles are called virtual oracle. To evaluate them, the
verifier must simply evaluate the existing oracles and compose the queries
together.

4.1.2 Rowcheck

A similar technique can be applied even more effortlessly to solve the “rowcheck”
problem. Since the prover sends fAz, fBz, fCz at the start of the protocol, the
verifier can make sure fAz · fBz − fCz ≡ 0 by testing the virtual oracle

r(X) := fAz(X) · fBz(X)− fCz(X)
ZH(X) .

Since the claimed degrees of fAz, fBz, fCz are all ≤ |H| − 1, the numerator
should have degree ≤ 2(|H| − 1). If the relation does hold, we would have
deg(r) ≤ |H| − 2, which is what the verifier will check.

4.1.3 Lincheck

Recall that the “lincheck” problem checks whether y ?= Mx for x, y ∈ Fn,M ∈
Fn×n. Rather than checking the relation in full, we could instead verify that a
random linear combination of the components of v := y −Mx equals 0. Setting
this linear combination to

(
1, α, . . . , αn−1), we can define the above problem as

a polynomial instead:

h(X) =
n∑
i=1

yi − n∑
j=1

Mi,jxj

Xi−1.

When the orignal matrix relation holds, h is identically 0. If that is not the case,
then the Schwartz-Zippel lemma would fail with high probability, since

Prr ←$ F[h(r) = 0 | y 6= Mx ] ≤ n− 1
|F |

.

In an IOP protocol, the verifier is given oracle access to the low-degree
extension of x, y ∈ FH as fx(X), fy(X) which are both of degree < n (V still
has full access to M ∈ FH×H). V starts by sampling r←$F and sends it to P.
Both parties can then construct the polynomial pr defined over H:

pr(X) = rint(X) · fy(X)−
(∑
b∈H

rint(b) ·Mb,X

)
· fx(X).
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Note that for V, pr is a only a virtual oracle, but this is enough since the
parties can now run the univariate Sum-Check protocol from § 4.1.1 to verify∑
a∈H pr(a) ≡ 0.
In the full protocol, 3 separate “linchecks” need to be performed, but though

careful optimization it is possible to batch these together.

4.1.4 Adding Zero-Knowledge

So far, we have not yet detailed how the zero-knowledge property is achieved
concretely. Most times, it requires only a few modification to an existing protocol,
and does not add much overhead. We briefly present some techniques used in
Aurora to achieve this goal.

First, the oracles fMz and fz sent by the prover should not leak any infor-
mation about the underlying vectors. Therefore, we forbid the verifier from
querying them in any a ∈ H. This is not sufficient, since the full polynomial can
always be recovered given |H|+ 1 arbitrary points, even outside of H. Since we
know from the protocol description how much queries V makes to some fz, the
prover actually sends f ′z(X) := fz(X) +ZH(X) ·R(X). Here, R(X) is a random
polynomial of degree b, where b is a bound on the number of queries V makes to
f ′z.

The Sum-Check protocol for
∑
H f = µ can also be enhanced with zero-

knowledge with only 2 extra communication rounds.

• P sends a random polynomial q ∈ F≤|H|[X], along with β :=
∑
a∈H q(a).

• V responds with c←$F.

• P and V invoke Sum-Check for the claim
∑
H(c · f + q) = c · µ+ β.

A similar idea is used during the low-degree testing phase in FRI, through
linearity of Reed-Solomon codes. When proving that some fz ∈ RS[L, ρ], the
prover first sends r ∈ RS[L, ρ] and the verifier responds with s←$F. The test is
then performed over s · fz + r ∈ RS[L, ρ].

4.2 Marlin
Marlin [CHM+20] improves upon Aurora in two distinct ways to achieve loga-
rithmic verification time and much smaller practical proof sizes. It achieves this
by preprocessing the R1CS instance and uses a different polynomial. Proofs with
preprocessing are sometimes referred to as holographic proofs, which are proof
where the verifier has access to a succinct representation of the input.

4.2.1 Holography

When a proof system is used to prove the correct execution of a specific problem,
the task of converting this program into an appropriate R1CS instance can
take a lot more time than running the program itself. In situations where the
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verification time needs to be fast, the arithmetization can be performed ahead
of time, essentially as a preprocessing step of the proof system.

This is for example the case of Zcash [BCG+14], where a specific circuit was
designed to verify transactions in a private way. A highly optimized R1CS in-
stances was crafted, which was used with the proof system due the Groth [Gro16].

In general, this preprocessing step is defined as a deterministic algorithm
that produces a proving and verification key for the circuit. The proving key pk
should provide all the information necessary to create a proof for this circuit,
whereas the verification key vk is used to attest the proof is consistent with the
encoding provided in pk.

In Marlin, this idea is used to speed up the “lincheck” from Aurora, where
the preprocessing step involves creating succinct representations of the matri-
ces A,B,C. If we manage to find appropriate low-degree polynomials which
accurately describe these matrices, we can set the proving key pk to be these
polynomials. At the start of the protocol, the verifier is given oracle access to
these polynomials, and may query them in the same way as the prover’s ones.
The verification key can then be seen as a commitment these polynomials, and
is used at the end of the protocol to ensure the that the evaluations it received
and the look at correct.

While Marlin itself uses a different way of representing polynomials (which we
explore in the next section), we look at the case where pk contains Reed-Solomon
codewords. The key vk would then consist of the Merkle root of the tree for the
codewords, and when the prover sends symbols from the polynomials in pk, it
would then send the corresponding authentication paths.

4.2.2 Matrix Arithmetization

In order to describe M ∈ {A,B,C} as a polynomial, we take advantage of the
fact that M is often sparse since the number of non-zero entries will be similar
to the number of variables.

We start by indexing the non-zero entries in M by a set K ⊂ F and define

〈M〉 : k ∈ K 7→ (a, b,Ma,b) ∈ H ×H × F.

Taking the low-degree extension of each component of 〈M〉(k), we obtain 3
polynomials row(X), col(X), val(X) ∈ F<|K|[X] such that

〈M〉 = (row(k), col(k), val(k)) = (a, b,Ma,b), k ∈ K.

We can now write M as a bivariate polynomial:

fM (X,Y ) :=
∑
k∈K

LH,row(k)(X) · LH,col(k)(Y ) · val(k).

Since we compose LH with row and col, the degree of the summand in k is
O(|H||K|). Therefore, M is not a low-degree extension, whose degree would
then be < |K| in both X and Y . Some extra work is required to get there.
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We consider the unnormalized Lagrange polynomial [BCG+19] which is de-
fined as YH(X,Y ) := ZH(X)−ZH(Y )

X−Y . It has the property that YH(X, a) =
YH(a,X) = LH,a(X) · YH(a, a). We use it to obtain a rational expression for
LH,row(k)(X) and LH,col(k)(Y ):

LH,row(k)(X) = YH(row(k), X)
YH(row(k), row(k)) , LH,col(k)(Y ) = YH(col(k), Y )

YH(col(k), col(k)) .

The normalizing factors YH(α, α),YH(β, β) can be taken into account by
val instead. We therefore consider row(X), col(X), val(X) as the low-degree
extensions over K such that for all k ∈ K and (a, b,Ma,b) := 〈M〉(k):

row(k) = a, col(k) = b, val(k) = Ma,b

YH(a, a) · YH(b, b) .

We can now write the bivariate low-degree extension fM (X,Y ) of M as:

fM (X,Y ) =
∑
k∈K

YH(row(k), X) · YH(col(k), Y ) · val(k)

=
∑
k∈K

YH(row(k), X) · YH(col(k), Y ) · val(k)

=
∑
k∈K

ZH(row(k))− ZH(X)
row(k)−X · ZH(col(k))− ZH(Y )

col(k)− Y · val(k)

=
∑
k∈K

ZH(X)
X − row(k) ·

ZH(Y )
Y − col(k) · val(k)︸ ︷︷ ︸

hk(X,Y )

.

Note that in each hk(X,Y ), we have row(k), col(k) ∈ H. Therefore, hk is not
rational, and has degree < |K| in both variables. By definition of val, we have
fM (a, b) = Ma,b, making fM (X,Y ) the low-degree extension of M .

If a verifier is given oracle access to row, col, val, it can check fM (a, b) ?= Ma,b

for a, b ∈ H. We consider the summand of fM as a rational function h over K,
such that h(k) = hk(a, b). This results in the Sum-Check problem∑

k∈K

h(k) ?= Ma,b.

Unfortunately, the univariate Sum-Check from § 4.1.1 cannot be used directly,
since we must adapt it to the case where h is rational.

4.2.3 Rational Sumcheck

In the rational Sum-Check protocol, the prover has polynomials p, q (to which
the verifier is given oracle access) such that deg(p) = dp,deg(q) = dq and
q(k) 6= 0, ∀k ∈ K. The goal of the prover is to convince the verifier that∑
k∈K f(k)/g(k) ?= σ, for some σ ∈ F.
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The prover starts by computing the polynomial f(X) ∈ F<|K|[X] which
agrees with p/q over K. It then finds g, h ∈ F[X] with deg(g) ≤ |K| − 2 and
deg(h) = dh ≤ max{dp, |K| − 1 + dq}, such that

f(X) = Xg(X) + σ/|K|, p(X)− q(X) · f(X) = h(X) · ZK(K).

Notice that like in the univariate Sum-Check protocol, we have
∑
k∈K f(k) = σ.

The prover now sends g, h to V who can now compute the virtual oracle
h(X)

h(X) = p(X)− q(X) · (Xg(X) + σ/|K|)
ZK(X) .

It then must check that the degree bounds deg(g) ≤ |K| − 2 and deg(h) ≤ dh
are satisfied.

4.2.4 Lincheck

Equipped with the rational Sum-Check protocol, we show how it can be used
to to prove the “lincheck” problem when the verifier is given oracle access to
row, col, val which characterizeM ∈ FH×H . Recall that fM (X,Y ) can be defined
as

fM (X,Y ) =
∑
k∈K

ZH(X)
X − row(k) ·

ZH(Y )
Y − col(k) · val(k).

In same spirit as the “lincheck” in Aurora § 4.1.3, the prover starts by sending
the low-degree extensions fx, fy of x, y ∈ FH , where y is supposedly equal to
Mx. The verifier then responds with α←$F.

The parties must now check that the following polynomial sums to 0 over H.

q(X) := YK(α,X) · fy(X)− rM (α,X) · fx(X),

where rM (X,Y ) :=
∑
k∈H YK(X, k)fM (k, Y ).

If we ran the univariate Sum-Check protocol here, the verifier would struggle,
since evaluating the virtual oracle rM (α,X) would require Ω(|H||K|) operations
and oracle evaluations. The prover helps the verifier by sending it t(X) =
rM (α,X) ∈ F<|H|[X], and they proceed with a univariate Sum-Check for q′ over
H:

q′(X) := YK(α,X) · fy(X)− t(X) · fx(X).
However, the verifier must also check that the given t is correct, so it asks P

for the evaluation of t(β1) for β1←$F \H who responds with γ 4 .
Since t(β) = rM (α, β) =

∑
k∈H YK(α, k)fM (k, β), another univariate Sum-Check

would need to be performed over

q′′(X) = YK(α,X)fM (X,β).

Unfortunately, we have the same problem as before since the verifier will
need to query fM which requires O(|K|) field operations. To solve this, the

4the verifier will check t(β1) ?= γ at the end.
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authors of Fractal [COS20, Claim 6.7] proposed a neat optimization. They
noticed that if we consider a slightly different matrix M∗ ∈ FH×H such that
M∗a,b = Mb,a·YH(b, b), then rM (X,Y ) ≡M∗(X,Y ). Therefore, the preprocessing
step actually performs the arithmetization of § 4.2.2 over M∗ in order to produce
the polynomials row, col, val. With this trick, the verifier only needs to check
that γ = fM∗(α, β), which can be done efficiently using the rational sumcheck.

The full protocol for a holographic “lincheck” is described in Figure 8.

Lincheck for y ?= Mx, x, y ∈ FH , M ∈ FH×H

Prover P(x, y,M) Verifier Vrow,col,val

fx, fy ∈ F<|H| fx(X), fy(X)

α α←$F \H

t(X) = rM (α,X) ∈ F<|H| t(X)

Sum-Check : 0 ?=
∑

k∈H YK(α, k) · fy(k)− t(k) · fx(k)

β β←$F \H

γ = rM (α, β) γ t(α)
?
γ

rational Sum-Check : σ ?=
∑

k∈K
ZH (α)
α−row(k) ·

ZH (β)
β−col(k) · val(k)

Figure 8: Holographic “lincheck”

4.2.5 Polynomial Commitments

The algebraic IOP model provides a useful layer of abstraction when designing
protocols, since we do not yet need to worry about the actual representation of
the polynomials sent by the prover.

In § 3.3.2, we focused on algebraic IOPs where the oracles are encoded as
Reed-Solomon codes. Marlin (and many other recent proof systems) instead use
polynomial commitments to define the actual IOP. To understand this framework,
we need to look back at how an algebraic IOP is converted into an interactive
protocol.

Whenever the prover sends a polynomial, it actually sends a commitment to
it instead. The verifier can then query the polynomial by simply requesting the

31



evaluation from the prover. In order to trust that these evaluations were correct
and that the polynomials were correctly described in terms of their expected
degrees, the parties will need to run another protocol at the end of the algebraic
IOP. At this stage, the prover provides proofs of consistency between the initial
commitments and the answers it gave, and convinces the verifier the oracles were
correctly encoded.

To make the comparison with the Reed-Solomon/FRI paradigm we have been
using up to now, the Merkle tree roots of the RS codeword can be considered
as the commitments to the polynomials. Then, the FRI protocol is run to make
sure the polynomials are of correct degree and that the evaluations were correct.

The polynomial commitment scheme used in Marlin is based on the construc-
tion by Kate et al. [KZG10]. It requires a bilinear map e : G1×G2 → GT , where
G1,G2,GT are groups of prime order q.

The group GT is written using multiplicative notation, whereas G1,G2 use
additive notation. For Gj = G1,G2, the identity element of Gj is [0]j and it is
generated by [1]j . Multiplication of [x]j by s ∈ {0, 1, . . . q − 1} is defined using
additive notation as:

s · [x]j = [x]j + · · ·+ [x]j︸ ︷︷ ︸
s times

, where [x]j = x · [1]j .

The pairing e is non-degenerate, which means that e([1]1, [1]2) 6= [1]T . More-
over, for s, x, y, z ∈ {0, 1, . . . q − 1}, e satisfies:

e([x]1 + [y]1, [z]2) = e([x]1, [z]2) · e([y]1, [z]2)
e([x]1, [y]2 + [y]2) = e([x]1, [y]2) · e([x]1, [z]2)
e(s · [x]1, [y]2) = e([x]1, s · [y]2) = e([x]1, [y]2)s.

We define the (simplified) polynomial commitment scheme by the following
algorithms:

pk← Setup(D) Output a secret x ∈ {0, . . . , q − 1}, and public parameters pk =(
[1]1, [x]1, . . . , [xD]1, [1]2, [x]2

)
.

For f(X) =
∑D
i=0 aiX

i, we define [f(x)]j :=
∑D
i=0 ai[xi]j for j = 1, 2.

c← Commit(pk, f(X)) Commit to f(X) ∈ F≤D[X] as c = [f(x)]1 ∈ G1.

π ← Open(pk, f(X), z, y) Create a proof of consistency between a commitment c,
the polynomial f , and an evaluation y = f(z) for y, z ∈ F. First, compute
the witness polynomial w(X) = f(X)−y

X−z and set π = [w(x)]1.

{0, 1} ∈ Check(pk, f(X), z, y, π, c) Check the proof of opening π by verifying

e(c− [y]1, [1]2) ?= e(π, [x]2 − [z]2).

Output 1 if equality holds, and 0 otherwise.
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We can check that the last equation holds, by observing that

e(π, [x]2 − [z]2) = e ([w(x)]1 , [x− z]2)

= e

([
f(x)− y
x− z

]
1
, [x− z]2

)
= e

(
(x− z)−1 · [f(x)− y]1 , [x− z]2

)
= e

(
[f(x)− y]1 , (x− z)

−1 · [x− z]2
)

= e (c− [y]1 , [1]2) .

Compared with the Reed-Solomon construction, the description does not
mention any “low-degree test”, but only a test of correct evaluation. Fortunately,
all the low-degree checks the verifier had to do were for polynomials h of the
form

h(X) = f(X)− g(X)
ZH(X) .

With a polynomial commitment scheme, the verifier instead performs a polyno-
mial identity test by testing f(r) ?= h(r)ZH(r) + g(r) for some r←$F \H.

The main advantage of using this type of polynomial commitments, is that
the proofs are much smaller. Indeed, after applying the non-interactive transfor-
mation, the authentication paths for the Merkle tree are replaced by a single
group element. On the other hand, elliptic curve operations can be a lot slower
than invoking a hash function. Proper evaluation is thus required to accurately
compare both of these constructions.

4.2.6 Trusted Setup

Unfortunately, the security of the polynomial commitment scheme depends on
the secret x being unknown to all participants. Since it is hard to trust a single
party to safely destroy x, an MPC ceremony can be performed in which many
participants can contribute randomness. It can be done so that as long as a
single party has acted honestly, then nobody could have influenced the outcome.

Other proof systems like [Gro16] depend on a circuit-specific setup, rendering
it impractical for general purpose proofs. In contrast, IOPs based on FRI do not
rely on this kind of setup and are sometimes referred to as transparent.

4.3 Fractal
Fractal [COS20] builds upon both Aurora and Marlin, by using the low-degree
testing framework from Aurora, and the preprocessing techniques in Marlin.
Therefore it achieves both sub-linear verification and plausible post-quantum
security without any trusted setup.

The algebraic IOP step is essentially the same as the one described in § 4.2,
since we already incorporated the optimization proposed by Fractal. We focus
on the recursive proof composition property instead.
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4.3.1 Recursion

Suppose we are interested in the result of composing a function F : Fn → Fn
T times. That is, we start with z0 ∈ Fn, and then iteratively compute zi =
F (zi−1) ∈ Fn, i ≥ 1 We then want to prove that a given zT is the result of
having correctly computed FT (z0). Naïvely generating a proof for this type of
statement would be undesirable, since the circuit for FT would be T times that
of F .

Instead, we apply the idea of incrementally verifiable computation [Val08]
where a proof πi is generated at every iteration of F , simultaneously proving that
zi = F (zi) for some zi−1, and that there exists a valid proof πi−1 attesting that
zi−1 = F i−1(z0). We can therefore consider that πT proves that zT = FT (z0),
without needing access to any previous intermediary results or proofs.

More concretely, for each iteration i, we define an NP instance xi = (F, i, zi),
and the corresponding witness wi = (zi−1, πi−1). The predicate function R(xi, wi)
returns true when zi = F (zi−1) and acc ← V(F, xi−1, πi−1), where xi−1 =
(F, i− 1, zi−1). The prover then creates the proof π which proves that R(xi, wi) =
true.

We note that it is essential that the proofs πi are SNARKs. Indeed, if it is
not succinct and |πi| was linear in the size of statement (xi, wi) being proved,
then its size grow exponentially. Since π is an argument of knowledge, we can
trust that each proof was generated by a computationally bounded party who
actually knew the previous value and proof. By induction, it guarantees that
the full chain is correct.

If we take a deeper look at the last step, we notice that the circuit which
computes R needs to evaluate the function F provided as input. Therefore, R
will need to be designed so that it is capable of simulating arbitrary circuits.
Theoretically, this type of simulation would only incur a constant multiplicative
increase in run-time over running the original circuit. In practice though, this
would be highly inefficient.

To solve this, we consider a slightly different construction which exploits the
preprocessing power of the SNARK. Rather than providing the function F to
R at each iteration, we can instead directly embeds F in order to check that
zi = F (zi−1). The next part of the circuit for R must then run the SNARK
verifier to check the proof V(vk, (vk, zi−1), πi−1) and check that it accepts. Here,
vk is the verification key resulting from preprocessing R.

More concretely, it would be setup as follows:

preprocessing Construct a circuit for the relation R(xi, wi) where xi = (vk, zi)
and wi = (πi−1, zi−1). In particular, R checks that zi = F (zi−1) and
acc = V(vk, (vk, zi−1), πi−1). Perform the preprocessing on R to obtain the
verification/proving keys pk, vk.

proving Run the prover P for the circuit R and return πi ← P(pk, xi, wi).

verification Run the verifier V for the circuit R and check acc = V(vk, xi;πi).
The verifier is convinced that the prover knew a valid pair (zi−1, πi−1).
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The big obstacle we need to overcome with this construction lies in the
creation of the circuit R which has to include a description of the circuit for V.
While a full description would be too long, we mention one interesting aspect
that must be taken into account: the hash function function used to instantiate
the random oracle. In a non-recursive SNARK, we would usually chose a hash
function such as SHA-2 or BLAKE2 since these result in better performance.
Unfortunately, representing these in a circuit is highly inefficient since they rely
mostly on binary arithmetic and we would therefore have to consider each bit
as one field element. Instead, using an algebraic hash function allows us to
work with field elements directly, and allow us to work with Merkle trees more
efficiently.

4.4 Evaluation
By choosing to study Aurora, Marlin, and Fractal, we are able to accurately
compare the impact of both preprocessing and the use of different polynomial
commitment schemes. Our baseline for this will be Fractal. Comparing it to
Aurora should show the benefits of preprocessing since they are both based on
algebraic IOPs using the Reed-Solomon encoding and FRI. Since the algebraic
IOP in Fractal and Marlin is essentially the same, their differences lie mainly in
the polynomial commitments.

Asymptotic Performance In the following table, we describe the asymptotic
efficiency of the zkSNARKs produced by the three proof systems. We define n
as the number of inputs for the circuit, and m as the number of non-zero entries
in the matrices A,B,C. Since these are usually sparse in practice, m will be
similar to the number of rows. For more detailed figures, we refer the reader to
the original papers.

rounds proof length queries tP tV
Aurora O(logn) O

(
log2 n

)
O(logn) O(m+ n logn) O(m)

Fractal O(logm) O
(
log2m

)
O(logm) O(m logm) O

(
log2m

)
Marlin O(1) O(1) O(1) O(m logm) O(logm)

The first three columns are tightly linked, since we considered provers who
send a constant number of polynomials per round, to which the verifier makes
a constant number of queries. Recalling the BCS transformation from § 3.3.3,
the proof must include commitments to all the prover’s polynomials as well as
all the answers to the verifier’s queries accompanied by opening proofs. The
run-times for the prover in Fractal and Marlin is the same as the time required
to pre-process the R1CS matrices, and so we omit the latter. Moreover, we note
that the resulting super-linear run-time of the prover is mostly due to the Fast
Fourier transform that is required to obtain low-degree extensions of vectors.

Looking at the first two rows, we see that by leveraging preprocessing, Fractal
achieves logarithmic verification time instead of linear time for Aurora. This
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enables the more efficient “lincheck” where the verifier is no longer required to
iterate over all entries of the matrices A,B,C. However, the efficiency of Fractal
depends on m rather than n, which means it may actually perform worse for
circuits where the number of constraints is a lot greater than the number of
variables.

Finally, we can observe in the two last rows that using a pairing based
polynomial commitment should result in much smaller proofs since opening
proofs are single group elements, rather that log |L|-sized authentication paths.
However, Marlin and Fractal have very similar run-times, though it is hard to
compare concretely since operations over elliptic curves will generally be a lot
slower than simple field operations and hashes.

Evaluation While asymptotic figures are helpful, we also need to look at
concrete performance in order to get an accurate comparison. To do so, we
use the open-source libiop [SCI] and arkworks [CHM+] libraries provided by the
authors of the papers, written in C++ and Rust respectively.

For the Marlin benchmark, we use the base field of the BLS12-381 elliptic
curves, and ignore the cost of running the trusted setup. For Aurora and Fractal,
the default field size is 181 bits, and we set it to use the conjectured FRI soundness
upper-bound (this result in fewer necessary repetitions). We considered randomly
generated circuits in n variables and constraints, such that m ∼ n, and n ranges
from 28 to 218. We present our results in Figure 9 which include the timings
for proving, verification, and preprocessing statements as well as resulting proof
sizes for the 3 different zkSNARKs.

While the verification time for Fractal is indeed a lot faster than with Aurora,
Fractal actually performs worse in terms of all other metrics. Surprisingly though,
the proving time of Aurora turned out the be the fastest. Looking at proof sizes,
the constant size (880 bytes) proofs of Marlin are impressive, but those of Aurora
and Fractal are still very reasonable at only a few hundred kilobytes.

5 Conclusion
Only a few years ago, proof systems like those we presented in this report would
have seemed inimaginable. Interestingly though, most of the concepts they are
based on have been known for many decades, and come from many different areas
of research, including complexity theory, information theory, and cryptography.
A good background in these fields is a necessary prerequisite to start learning
about recent zkSNARK constructions, making them harder to approach.

With this report, the goal was to explain zkSNARKs “from the ground up”
and explain all the steps and concepts involved along the way. Moreover, we
wanted to motivate these with examples and intuition as a way of “filling in the
gaps” one might encounter when reading more recent publication. Indeed, many
important aspects of proof systems lie in tiny details, such as the use of FFTs, or
the use oracles in protocols, or even the some elementary facts about polynomials.
These details can be brought to light when they are implemented in software,
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Figure 9: Evaluation of Aurora, Marlin, and Fractal using libiop and arkworks.
Run on Intel 2.6 GHz CPU, 16GB RAM, multi-threading disabled.

which provides another way of developing intuition about the system as a whole.
In fact, this link between theory and implementation is also understanding the
systems as a whole, since asymptotic performance may be misleading at times.

Thankfully, the amount of research surrounding zkSNARKs does not seem
to be slowing down, and we look forward to studying new improvements and
ideas that make zkSNARKs more efficient. One particular interesting research
direction being explored is finding linear-time provers, which requires generalizing
algebraic IOPs to tensor IOPs. Circuits themselves are also being thoroughly
studied, and are now being designed in similar ways to modern CPUs. Moreover,
concepts like incrementally verifiable computation (or even more generally proof
carrying data) open the door for many new interesting paradigms where SNARKs
could be used.
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